numbering$94255$ - определение. Что такое numbering$94255$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое numbering$94255$ - определение

SCHEME FOR ASSIGNING NOMINAL NUMBERS TO ENTITIES
Numbering system; Numbering; Numbering System; Numbering schemes

Indian numbering system         
METHODS OF NAMING LARGE NUMBERS
Arawb; Hindu numbering system; Arab (number); Pakistani numbering system; Vedic numbering system; Indian number system; Pakistani numeral system; South Asian numbering system; Indian Numbering System; Indian numbering
The Indian numbering system is used in the Indian subcontinent (Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, Sri Lanka) and Afghanistan to express large numbers. The terms lakh or 1,00,000 (one hundred thousand, written as 100,000 outside India) and crore or 1,00,00,000 (ten million, written as 10,000,000 outside India) are the most commonly used terms in Indian English to express large numbers in the system.
Diels–Kranz numbering         
  • Hermann Alexander Diels
STANDARD SYSTEM FOR REFERENCING THE WORKS OF THE PRE-SOCRATIC PHILOSOPHERS
Diels-Kranz; Diels–Kranz numbering system; Diels–Kranz; Diels-Kranz numbering; Diels-Kranz numbering system; DK numbering; The Fragments of the Pre-Socratics
Diels–Kranz (DK) numbering is the standard system for referencing the works of the ancient Greek pre-Socratic philosophers, based on the collection of quotations from and reports of their work, Die Fragmente der Vorsokratiker (The Fragments of the Pre-Socratics), by Hermann Alexander Diels. The Fragmente was first published in 1903, was later revised and expanded three times by Diels, and was finally revised in a fifth edition (1934–7) by Walther Kranz and again in a sixth edition (1952).
Numbering scheme         
There are many different numbering schemes for assigning nominal numbers to entities. These generally require an agreed set of rules, or a central coordinator.

Википедия

Numbering scheme

There are many different numbering schemes for assigning nominal numbers to entities. These generally require an agreed set of rules, or a central coordinator. The schemes can be considered to be examples of a primary key of a database management system table, whose table definitions require a database design.

In computability theory, the simplest numbering scheme is the assignment of natural numbers to a set of objects such as functions, rational numbers, graphs, or words in some formal language. A numbering can be used to transfer the idea of computability and related concepts, which are originally defined on the natural numbers using computable functions, to these different types of objects.

A simple extension is to assign cardinal numbers to physical objects according to the choice of some base of reference and of measurement units for counting or measuring these objects within a given precision. In such case, numbering is a kind of classification, i.e. assigning a numeric property to each object of the set to subdivide this set into related subsets forming a partition of the initial set, possibly infinite and not enumeratable using a single natural number for each class of the partition.

In some cases (such as computing, time-telling, and in some countries the numbering of floors in buildings) zero-based numbering is used, where the first entity is assigned "zero" instead of "one".

Other numbering schemes are listed by field below.